LoRaWAN vs. Sigfox vs. Weightless-P: Simulation Results in the “Real World”

In wireless communication, the Hata Model for urban areas, also known as the Okumura–Hata model for being a developed version of the Okumura model, is the most widely used radio frequency propagation model for predicting the behaviour of cellular transmissions in built up areas. This model incorporates the graphical information from Okumura model and develops it further to realize the effects of diffraction, reflection and scattering caused by city structures. This model also has two more varieties for transmission in suburban areas and open areas. (source: Wikipedia)

The Hata Model simulation was conducted for Sigfox, LORA, and Weightless-P with the base station height set at 30m and the end devices heights set at 0.5m. The following simulation was conducted at Ubiik (hardware developers for Weightless-P) but we have checked their math and our team has confirmed the numbers are accurate and unbiased.

Let’s first take a look at the U.S Results (902-928MHz)US compaire.png

 

US2 9.54.52 AM.pngUS3.pngUS 1.png

Now let’s take a look at the results in Europe (863-870MHz). The only difference is LORA is only able to use a smaller bandwidth.

EUR compaire.pngEUR1.pngEUR 2.pngEUR 3.png

 

Let’s see what these numbers mean for an actual Smart Metering deployment (click here)

(If you would like to contribute/make edits/suggestions please contact us at techgu.rooh@gmail.com)

sources: (http://www.ubiik.com/lpwan-comparisons)

IoT connectivity solutions: Media access control layer and network topology

161-Datalink-MAC

Media access control layer and network topology

For IoT applications, the main characteristics of the media access layer control (MAC) that need to be considered are multiple access, synchronization, and network topology.

Multiple Access. Looking back at decades of successful cellular system deployment, one can safely conclude that TDMA is a good fit for the IoT. TDMA is suited for low-power operation with a decent number of devices, as it allows for optimal scheduling of inactive periods. Hence, TDMA is selected for multiple access in the MAC layer.

Synchronization. In IoT applications, there are potentially a very large number of power-sensitive devices with moderate throughput requirements. In such a configuration, it is essential to maintain a reasonably consistent time base across the entire network and potentially across different networks. Given that throughput is not the most critical requirement, it is suitable to follow a beacon-enabled approach, with a flexible beacon period to accommodate different types of services.

Network topology. Mobile networks using a cellular topology have efficiently been servicing a large number of devices with a high level of security and reliability, e.g., 5,000+ per base station for LTE in urban areas. This typology is based on a star topology in each cell, while the cells are connected in a hierarchical tree in the network backhaul. This approach is regarded suitable for the IoT and is therefore selected.

The network layer and interface to applications

The network layer (NWK) and the interface to applications are less fundamental as far as power-efficiency and reliability is concerned. In addition, there is more variation in the field of IoT applications. Nevertheless, it is widely acknowledged that IoT applications need to support the Internet Protocol (IP), whether it is IPv4 or IPv6. In addition, the User Datagram Protocol (UDP) and Constrained Application Protocol (CoAP) could provide the relevant trade-off between flexibility and implementation-complexity on resource-constrained devices.

Furthermore, the IoT will represent an immense security challenge, and it is likely that state-of-the-art security features will become necessary. As of today, we can assume 128 bits Advanced Encryption Standard (AES) for encryption and Diffie-Hellman (DH), or the Elliptic Curve Diffie-Hellman (ECDH) variants, can become the baseline for securing communication.

Great Write Up about Pebble and Apple Iwatch

Pebble vs. Apple: David and Goliath This Ain’tapple-watch-6_1

By 

By this time next week Apple will have, once again, sucked all the oxygen out of the room. Next Monday, at one of the company’s time-tested high-profile events, we’ll all be attending the coming out party for Apple Watch.

But this week, the smart watch news is all about Pebble, which can reasonably claim to have energized the space three years ago in a very Apple way: Exploding onto the scene with a breakthrough device someone else thought of first.

Pebble returned to Kickstarter last week in a bald attempt to capitalize on the smart watch buzz created by Apple’s imminent entry into the space with Pebble Time, a sportier model with a new approach to notifications it calls Timeline. They’ve promised a month of news, timed to the 30-day campaign, which includes today’s reveal of — surprise! — an upgrade option to Pebble Time Steel, a steal at only $80 more than the (long since taken) $170 batch (Yes, I’m in. Again).

Pebble and Apple isn’t David and Goliath, at least not as far as Pebble CEO Eric Migicovsky is concerned. “Whether delusional, manically focused or simply well-rehearsed, Migicovsky chose to view the Apple announcement as a plus for Pebble,” Steven Levy writes in Backchannel. ‘It’s pretty incredible to see the world’s largest company come into the watch space,’ he said. ‘It’s validating something I’ve known for the last six and a half years — that the next generation of computing will be on your body.'”

What is undeniably true is that Pebble has sold more than one million watches in three years, and six days into a 30-day Kickstarter campaign, has sold another $14 million worth. With that, the company has re-claimed the title (it first took with the original Pebble) as the most funded Kickstarter project ever.

So, there is that.

I first took notice of Pebble in my Reuters column when they broke all records on their first Kickstarter campaign, in April 2012:

A Kickstarter project for a device you wear on your wrist, but that needs a smartphone to do anything really interesting, has raised more than $5.3 million in eight days. This is this far and away the most anyone has ever raised on Kickstarter, and it’s happening – with a gadget in a category that has a pretty dismal track record – at a sales pace that would make even Apple sit up and take notice.

As much as I like to dine out on those last words, I’m not really sure Apple did “sit up take notice” as much as it might have already been working on the idea for quite some time.

The smart watch has all the earmarks of the sort of device-that-time-forgot Apple often manages to turn into something relevant. Microsoft had tried and failed with it a decade before the first Pebble (note the similarities to the tablet, which Apple reinvented a decade after the Redmond giant tried to market its own). Various kinds of smart watch have been around ever since, getting little love. Even Pebble was going nowhere fast as a developer of a device tethered to Blackberry phones, which were about to fall off a cliff.

What changed? Two very important, intertwined things.

Smart watches were originally conceived of as stand-alone devices. The limitations are now pretty obvious, chiefly the tiny screen. Remember, though, at the time ofMicrosoft’s SPOT, screens on mobile phones were also pretty tiny.

But they didn’t do all that much. Unlike the Dick Tracy device people of a certain age remember fondly you couldn’t even talk to anyone with it. I mean, we KNEW that watches were communications devices in the early 1960s. So why aren’t they in the year 2002?!

Apple went a long way towards setting the stage for the emergence of the smart phone as must-have mobile device in 2007, with the first iPhone. Among the new features was a ginormous screen, which made activities like web surfing credible on a mobile device. So successful was the smart phone that it created a new version of a problem futurist Alvin Toffler had identified in 1970: information overload. Hard core techies, like Gigaom’s Mathew Ingram, would soon argue that you should choose a smart phone based on how well they wrangled notifications above all other features.

And that was the new opening for the resurgence of the smart watch. The trick, from my perspective, is to avoid mission creep. It is to remember that the opportunity lies in extending the utility of the smart phone, not replacing it.

But the existential question about whether smart watches are a mainstream consumer item is valid. Notification management is pretty hard core. One new use case: There are unique health monitoring opportunities for something strapped to your wrist. Pebble steals a little of that thunder today — surprise! — with a reveal of the smartstrap, which can “contain electronics and sensors to interface directly with apps running on Pebble Time.” That is another open invitation to developers, who have already flocked to the Pebble platform in very respectable numbers — 26,000 have written 6,000 apps.

Apple may bury Pebble, or its entry into the smart watch space might lift all boats — even Android, whose fans will tell you already boasts a range of excellent choices with features Apple will reinvent, or steal, depending on your point of view.

So, for a smart watch aficionado these are exciting times. If Apple is wildly successful, look to them to even extend coverage to Android devices, like iTunes spread to Windows. Apple’s entry is a make-or-break event which will answer whether there is a massive, pent-up hunger for this kind of device, or whether it’s only a play thing for people like me.

Either way, it’s about time.